If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+45n+144=0
a = 1; b = 45; c = +144;
Δ = b2-4ac
Δ = 452-4·1·144
Δ = 1449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1449}=\sqrt{9*161}=\sqrt{9}*\sqrt{161}=3\sqrt{161}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-3\sqrt{161}}{2*1}=\frac{-45-3\sqrt{161}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+3\sqrt{161}}{2*1}=\frac{-45+3\sqrt{161}}{2} $
| 6x-35=-23 | | 4x-28=-12 | | 4^x-3=0,125 | | 7(c-6)=(4-c×3) | | 4(3x-5)-(2x+4)+3x= | | 2x-5/3x+6=1/4 | | (x-8)/(x-7)-3=0 | | 1.5n=2n+6 | | -2q-3=-24-5q | | x^2-66x+1024=0 | | z+11=24 | | (4x+16)+6x=90 | | 4(y-2)+4=5(-2y-1)+3 | | 20=-3n+3 | | A=3r2 | | 7t+4=10t+16 | | -34=19-5z+7 | | −x+5+6x=1+5x+3 | | -75=x+12 | | 5-x/9=1 | | C(x)=15(25)+100 | | 4x-8x+3=15 | | 4x+6x+16=180 | | (2x+5)(x-1=-6 | | | | 4x(x)/2=50 | | -3x(2-2x)=-2(-4x+7) | | 30*x=34,3 | | 94=50(x) | | -29x=464 | | 0.01x+0.001=1/100(x+10 | | (x+4)^2+x^2-(400)=0 |